Assessing uncertainty of climate change impacts on long-term hydropower generation using the CMIP5 ensemble—the case of Ecuador
Pablo E. Carvajal (),
Gabrial Anandarajah,
Yacob Mulugetta and
Olivier Dessens
Additional contact information
Pablo E. Carvajal: University College London
Gabrial Anandarajah: University College London
Yacob Mulugetta: University College London
Olivier Dessens: University College London
Climatic Change, 2017, vol. 144, issue 4, No 7, 624 pages
Abstract:
Abstract This study presents a method to assess the sensitivity of hydropower generation to uncertain water resource availability driven by future climate change. A hydrology-electricity modelling framework was developed and applied to six rivers where 10 hydropower stations operate, which together represent over 85% of Ecuador’s installed hydropower capacity. The modelling framework was then forced with bias-corrected output from 40 individual global circulation model experiments from the Coupled Model Intercomparison Project 5 for the Representative Concentration Pathway 4.5 scenario. Impacts of changing climate on hydropower resource were quantified for 2071–2100 relative to a baseline period 1971–2000. Results show a wide annual average inflow range from + 277% to − 85% when individual climate experiments are assessed. The analysis also show that hydropower generation in Ecuador is highly uncertain and sensitive to climate change since variations in inflow to hydropower stations would directly result in changes in the expected hydropower potential. Annual hydroelectric power production in Ecuador is found to vary between − 55 and + 39% of the mean historical output when considering future inflow patterns to hydroelectric reservoirs covering one standard deviation of the CMIP5 RCP4.5 climate ensemble.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://link.springer.com/10.1007/s10584-017-2055-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:144:y:2017:i:4:d:10.1007_s10584-017-2055-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-017-2055-4
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().