Understanding the detectability of potential changes to the 100-year peak storm surge
Robert L. Ceres (),
Chris E. Forest and
Klaus Keller
Additional contact information
Robert L. Ceres: The Pennsylvania State University
Chris E. Forest: The Pennsylvania State University
Klaus Keller: The Pennsylvania State University
Climatic Change, 2017, vol. 145, issue 1, No 16, 235 pages
Abstract:
Abstract In many coastal communities, the risks driven by storm surges are motivating substantial investments in flood risk management. The design of adaptive risk management strategies, however, hinges on the ability to detect future changes in storm surge statistics. Previous studies have used observations to identify changes in past storm surge statistics. Here, we focus on the simple and decision-relevant question: How fast can we learn from past and potential future storm surge observations about changes in future statistics? Using Observing System Simulation Experiments, we quantify the time required to detect changes in the probability of extreme storm surge events. We estimate low probabilities of detection when substantial but gradual changes to the 100-year storm surge occur. As a result, policy makers may underestimate considerable increases in storm surge risk over the typically long lifespans of major infrastructure projects.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s10584-017-2075-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:145:y:2017:i:1:d:10.1007_s10584-017-2075-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-017-2075-0
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().