Slowing down the retreat of the Morteratsch glacier, Switzerland, by artificially produced summer snow: a feasibility study
Johannes Oerlemans (),
Martin Haag and
Felix Keller
Additional contact information
Johannes Oerlemans: Utrecht University
Martin Haag: Fachhochschule Nordwestschweiz
Felix Keller: Academia Engiadina
Climatic Change, 2017, vol. 145, issue 1, No 14, 189-203
Abstract:
Abstract Many large valley glaciers in the world are retreating at historically unprecedented rates. Also in the Alps, where warming over the past decades has been more than twice as large as the global mean, all major glaciers have retreated over distances of several kilometers over the past hundred years. The Morteratsch Glacier, Pontresina, Switzerland, is a major touristic attraction. Due to strong retreat, the lowest part of the glacier is getting out of sight from the gravel road that provided direct access to the glacier front. The Community of Pontresina has commissioned a preparatory study to find out if it is possible to slow down the retreat of the Morteratsch Glacier in an environmentally friendly way. In this article, we report on the outcome of such a study, based on a modeling approach. Our analysis is based on a 20-year weather station record from the lower part of the glacier, combined with calculations with a calibrated ice-flow model. We arrive at the conclusion that producing summer snow in the ablation zone over a larger area (typically 0.5 to 1 km2) may have a significant effect on the rate of retreat on a timescale of decades. We consider various scenarios of climate change: (i) no change, (ii) a rise of the equilibrium-line altitude (ELA) by 1, 2, and 4 m/yr. Projections of glacier length are calculated until the year 2100. It takes about 10 years before snow deposition in the higher ablation zone starts to affect the position of the glacier snout. For the case of modest warming, the difference in glacier length between the snow and no-snow experiments becomes 400 to 500 m within two decades.
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10584-017-2102-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:145:y:2017:i:1:d:10.1007_s10584-017-2102-1
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-017-2102-1
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().