Vulnerability of grazing and confined livestock in the Northern Great Plains to projected mid- and late-twenty-first century climate
Justin Derner (),
David Briske (),
Matt Reeves (),
Tami Brown-Brandl (),
Miranda Meehan (),
Dana Blumenthal (),
William Travis (),
David Augustine (),
Hailey Wilmer (),
Derek Scasta (),
John Hendrickson (),
Jerry Volesky (),
Laura Edwards () and
Dannele Peck ()
Additional contact information
Justin Derner: USDA-ARS
David Briske: Texas A&M University
Matt Reeves: USDA-FS
Tami Brown-Brandl: USDA-ARS
Miranda Meehan: North Dakota State University
Dana Blumenthal: USDA-ARS
William Travis: University of Colorado Boulder
David Augustine: USDA-ARS
Hailey Wilmer: USDA-ARS
Derek Scasta: University of Wyoming
John Hendrickson: USDA-ARS
Jerry Volesky: University of Nebraska-Lincoln
Laura Edwards: South Dakota State University
Dannele Peck: USDA-ARS
Climatic Change, 2018, vol. 146, issue 1, No 3, 19-32
Abstract:
Abstract The Northern Great Plains (NGP) region of the USA—which comprises Montana, Wyoming, Colorado, North Dakota, South Dakota, and Nebraska—is a largely rural area that provides numerous ecosystem services, including livestock products, cultural services, and conservation of biological diversity. The region contains 25% of the Nation’s beef cattle and approximately one-third of the confined beef cattle, as well as the largest remaining native prairie in the US—the Northern Mixedgrass Prairie. With rising atmospheric CO2, the NGP is projected to experience warmer and longer growing seasons, greater climatic variability, and more extreme events (e.g., increased occurrence of large precipitation events). These climatic changes may affect livestock production both directly via physiological impacts on animals and indirectly via modifications to forage, invasion of undesirable plants, and increased exposure to parasites. This raises concerns about the vulnerability of grazing livestock operations and confined livestock operations to projected changes in mid- (2050) and late- (2085) twenty-first century climate. Our objectives are to (1) describe the NGP’s exposure to temperature and precipitation trends, inter-annual variability, and extreme events; (2) evaluate the sensitivity of beef cattle production to direct and indirect effects imposed by these projected climatic changes; and (3) provide a typology of adaptation strategies to minimize adverse consequences of projected changes and maximize beneficial consequences. Agricultural managers have developed considerable adaptive capacity to contend with environmental and economic variability. However, projected climatic changes, especially the increased frequency and magnitude of weather extremes, will require even greater adaptive capacity to maintain viable production systems. Consequently, regional vulnerability to projected climatic changes will be determined not only by ecological responses but also by the adaptive capacity of individual managers. Adaptive capacity in the NGP will differ from other regions, in part because projections suggest some opportunities for increased livestock production. Adaptations in both grazing and confined beef cattle systems will require enhanced decision-making skills capable of integrating biophysical, social, and economic considerations. Social learning networks that support integration of experimental and experiential knowledge—such as lessons learned from early adopters and involvement with science-based organizations—can help enhance decision-making and climate adaptation planning. Many adaptations have already been implemented by a subset of producers in this region, providing opportunities for assessment, further development, and greater adoption. Context-specific decision-making can also be enhanced through science-management partnerships, which aim to build adaptive capacity that recognizes multiple production and conservation/environmental goals.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s10584-017-2029-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:146:y:2018:i:1:d:10.1007_s10584-017-2029-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-017-2029-6
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().