EconPapers    
Economics at your fingertips  
 

The potential impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito Aedes aegypti

Andrew J. Monaghan (), K. M. Sampson, D. F. Steinhoff, K. C. Ernst, K. L. Ebi, B. Jones and M. H. Hayden
Additional contact information
Andrew J. Monaghan: National Center for Atmospheric Research
K. M. Sampson: National Center for Atmospheric Research
D. F. Steinhoff: National Center for Atmospheric Research
K. C. Ernst: University of Arizona
K. L. Ebi: University of Washington
B. Jones: City University of New York
M. H. Hayden: National Center for Atmospheric Research

Climatic Change, 2018, vol. 146, issue 3, No 15, 487-500

Abstract: Abstract The mosquito Aedes (Ae). aegypti transmits the viruses that cause dengue, chikungunya, Zika and yellow fever. We investigate how choosing alternate emissions and/or socioeconomic pathways may modulate future human exposure to Ae. aegypti. Occurrence patterns for Ae. aegypti for 2061–2080 are mapped globally using empirically downscaled air temperature and precipitation projections from the Community Earth System Model, for the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. Population growth is quantified using gridded global population projections consistent with two Shared Socioeconomic Pathways (SSPs), SSP3 and SSP5. Change scenarios are compared to a 1950–2000 reference period. A global land area of 56.9 M km2 is climatically suitable for Ae. aegypti during the reference period, and is projected to increase by 8 % (RCP4.5) to 13 % (RCP8.5) by 2061–2080. The annual average number of people exposed globally to Ae. aegypti for the reference period is 3794 M, a value projected to statistically significantly increase by 298–460 M (8–12 %) by 2061–2080 if only climate change is considered, and by 4805–5084 M (127–134 %) for SSP3 and 2232–2483 M (59–65 %) for SSP5 considering both climate and population change (lower and upper values of each range represent RCP4.5 and RCP8.5 respectively). Thus, taking the lower-emissions RCP4.5 pathway instead of RCP8.5 may mitigate future human exposure to Ae. aegypti globally, but the effect of population growth on exposure will likely be larger. Regionally, Australia, Europe and North America are projected to have the largest percentage increases in human exposure to Ae. aegypti considering only climate change.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://link.springer.com/10.1007/s10584-016-1679-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:146:y:2018:i:3:d:10.1007_s10584-016-1679-0

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-016-1679-0

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:146:y:2018:i:3:d:10.1007_s10584-016-1679-0