Classifying heatwaves: developing health-based models to predict high-mortality versus moderate United States heatwaves
G. Brooke Anderson (),
Keith W. Oleson,
Bryan Jones and
Roger D. Peng
Additional contact information
G. Brooke Anderson: Colorado State University
Keith W. Oleson: National Center for Atmospheric Research
Bryan Jones: CUNY Institute for Demographic Research
Roger D. Peng: Johns Hopkins Bloomberg School of Public Health
Climatic Change, 2018, vol. 146, issue 3, No 12, 439-453
Abstract:
Abstract Heatwaves are divided between moderate, more common heatwaves and rare “high-mortality” heatwaves that have extremely large health effects per day, which we define as heatwaves with a 20 % or higher increase in mortality risk. Better projections of the expected frequency of and exposure to these separate types of heatwaves could help communities optimize heat mitigation and response plans and gauge the potential benefits of limiting climate change. Whether a heatwave is high-mortality or moderate could depend on multiple heatwave characteristics, including intensity, length, and timing. We created heatwave classification models using a heatwave training dataset created using recent (1987–2005) health and weather data from 82 large US urban communities. We built twenty potential classification models and used Monte Carlo cross-validations to evaluate these models. We ultimately identified several models that can adequately classify high-mortality heatwaves. These models can be used to project future trends in high-mortality heatwaves under different scenarios of a changing future (e.g., climate change, population change). Further, these models are novel in the way they allow exploration of different scenarios of adaptation to heat, as they include, as predictive variables, heatwave characteristics that are measured relative to a community’s temperature distribution, allowing different adaptation scenarios to be explored by selecting alternative community temperature distributions. The three selected models have been placed on GitHub for use by other researchers, and we use them in a companion paper to project trends in high-mortality heatwaves under different climate, population, and adaptation scenarios.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10584-016-1776-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:146:y:2018:i:3:d:10.1007_s10584-016-1776-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-016-1776-0
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().