EconPapers    
Economics at your fingertips  
 

Projected trends in high-mortality heatwaves under different scenarios of climate, population, and adaptation in 82 US communities

G. Brooke Anderson (), Keith W. Oleson, Bryan Jones and Roger D. Peng
Additional contact information
G. Brooke Anderson: Colorado State University
Keith W. Oleson: National Center for Atmospheric Research
Bryan Jones: CUNY Institute for Demographic Research
Roger D. Peng: Johns Hopkins Bloomberg School of Public Health

Climatic Change, 2018, vol. 146, issue 3, No 13, 455-470

Abstract: Abstract Some rare heatwaves have extreme daily mortality impacts; moderate heatwaves have lower daily impacts but occur much more frequently at present and so account for large aggregated impacts. We applied health-based models to project trends in high-mortality heatwaves, including proportion of all heatwaves expected to be high-mortality, using the definition that a high-mortality heatwave increases mortality risk by ≥20 %. We projected these trends in 82 US communities in 2061–2080 under two scenarios of climate change (RCP4.5, RCP8.5), two scenarios of population change (SSP3, SSP5), and three scenarios of community adaptation to heat (none, lagged, on-pace) for large- and medium-ensemble versions of the National Center for Atmospheric Research’s Community Earth System Model. More high-mortality heatwaves were expected compared to present under all scenarios except on-pace adaptation, and population exposure was expected to increase under all scenarios. At least seven more high-mortality heatwaves were expected in a twenty-year period in the 82 study communities under RCP8.5 than RCP4.5 when assuming no adaptation. However, high-mortality heatwaves were expected to remain

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://link.springer.com/10.1007/s10584-016-1779-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:146:y:2018:i:3:d:10.1007_s10584-016-1779-x

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-016-1779-x

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:146:y:2018:i:3:d:10.1007_s10584-016-1779-x