EconPapers    
Economics at your fingertips  
 

Quantifying recent precipitation change and predicting lake expansion in the Inner Tibetan Plateau

Kun Yang (), Hui Lu, Siyu Yue, Guoqing Zhang, Yanbin Lei, Zhu La and Wei Wang
Additional contact information
Kun Yang: Tsinghua University
Hui Lu: Tsinghua University
Siyu Yue: Tsinghua University
Guoqing Zhang: CAS Center for Excellence in Tibetan Plateau Earth System
Yanbin Lei: CAS Center for Excellence in Tibetan Plateau Earth System
Zhu La: Chinese Academy of Sciences
Wei Wang: Changjiang Institute of Survey, Planning, Design and Research

Climatic Change, 2018, vol. 147, issue 1, No 12, 149-163

Abstract: Abstract Lake expansion since the middle of the 1990s is one of the most outstanding environmental change events in the Tibetan Plateau (TP). This expansion has mainly occurred in the Inner TP, a vast endorheic basin with an area of about 708,000 km2 and containing about 780 lakes larger than 1 km2. The total lake area of the Inner TP has increased from 24,930 km2 in 1995 to 33,741 km2 in 2015. The variability of the lake area in the coming decades is crucial for infrastructure planning and ecology policy for this remote region. In this study, a lake mass balance model was developed to describe the lake area response to climate change. First, the model was used to inversely estimate the change in precipitation from the change in lake volume. The result shows that precipitation has increased by about 21 ± 7% since the middle of the 1990s, as seen in GPCC global data set. Then, the lake size in the coming two decades was predicted by the model driven with either current climate or a projected future climate, showing the lake area would expand continuously, but at a lower rate than before. Both predictions yield a total lake area of 36150 ± 500 km2 in 2025 and a rise of average lake level by about 6.6 ± 0.3 m from 1995 to 2025. However, the two predictions become disparate in the second decade (2026–2035), as the future climate is more warming and wetting than the current climate. It is noted that the prediction of lake expansion is robust for the entire inner TP lake system but not always applicable to individual subregions or specific lakes due to their spatiotemporal heterogeneity.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10584-017-2127-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:147:y:2018:i:1:d:10.1007_s10584-017-2127-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-017-2127-5

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:147:y:2018:i:1:d:10.1007_s10584-017-2127-5