EconPapers    
Economics at your fingertips  
 

The global overlap of bioenergy and carbon sequestration potential

P. A. Turner (), K. J. Mach, D. B. Lobell, S. M. Benson, E. Baik, D. L. Sanchez and C. B. Field
Additional contact information
P. A. Turner: Carnegie Institution for Science
K. J. Mach: Stanford University
D. B. Lobell: Stanford University
S. M. Benson: Stanford University
E. Baik: Stanford University
D. L. Sanchez: Carnegie Institution for Science
C. B. Field: Stanford University

Climatic Change, 2018, vol. 148, issue 1, No 1, 10 pages

Abstract: Abstract Bioenergy with carbon capture and storage (BECCS) is a negative emissions technology that is a largely untested but prominent feature of ambitious climate change mitigation scenarios. This strategy involves capturing carbon dioxide (CO2) from stationary bioenergy facilities and sequestering it in suitable geological formations, effectively removing CO2 from the atmosphere. Many factors potentially limit BECCS deployment including obstacles to building pipeline networks that move large quantities of liquefied CO2 over long distances. Here, we examine the BECCS opportunity that exists in regions overlapping storage basins. Under current conditions, the equivalent of 22.9 GtCO2 y−1 of net primary production (NPP), a measure of biomass growth, overlies highly prospective CO2 storage basins, representing a sustainably harvestable total of approximately 7.6 GtCO2 y−1. Most land overlying basins is either forested or linked to food production. If only marginal agricultural lands, those inconsistently under agricultural production, are used to source biomass, the scale of the available resource is approximately 1 GtCO2 y−1. If transportation of biomass or CO2 is constrained, and if BECCS is not developed on forests or prime croplands, then BECCS deployments will be limited to a small, but meaningful fraction (~10%) of the levels typical in cost-optimized model trajectories that stabilize warming at 2 °C or less above pre-industrial temperatures. Marginal agricultural lands over storage basins can be an entry point for maturing the engineering technologies and financial markets needed for BECCS.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://link.springer.com/10.1007/s10584-018-2189-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:148:y:2018:i:1:d:10.1007_s10584-018-2189-z

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-018-2189-z

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:148:y:2018:i:1:d:10.1007_s10584-018-2189-z