Conditional stochastic simulation model for spatial downscaling for assessing the effects of climate change on hydro-meteorological variables
Taesam Lee () and
Taha B. M. J. Ouarda
Additional contact information
Taesam Lee: Gyeongsang National University
Taha B. M. J. Ouarda: INRS-ETE
Climatic Change, 2018, vol. 150, issue 3, No 3, 163-180
Abstract:
Abstract The current study examines the recently proposed “bias correction and stochastic analogues” (BCSA) statistical spatial downscaling technique and attempts to improve it by conditioning coarse resolution data when generating replicates. While the BCSA method reproduces the statistical features of the observed fine data, this existing model does not replicate the observed coarse spatial pattern, and subsequently, the cross-correlation between the observed coarse data and downscaled fine data with the model cannot be preserved. To address the dissimilarity between the BCSA downscaled data and observed fine data, a new statistical spatial downscaling method, “conditional stochastic simulation with bias correction” (BCCS), which employs the conditional multivariate distribution and principal component analysis, is proposed. Gridded observed climate data of mean daily precipitation (mm/day) covering a month at 1/8° for a fine resolution and at 1° for a coarse resolution over Florida for the current and future periods were used to verify and cross-validate the proposed technique. The observed coarse and fine data cover the 50-year period from 1950 to1999, and the future RCP4.5 and RCP8.5 climate scenarios cover the 100-year period from 2000 to 2099. The verification and cross-validation results show that the proposed BCCS downscaling method serves as an effective alternative means of downscaling monthly precipitation levels to assess climate change effects on hydrological variables. The RCP4.5 and RCP8.5 GCM scenarios are successfully downscaled.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10584-018-2276-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:150:y:2018:i:3:d:10.1007_s10584-018-2276-1
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-018-2276-1
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().