Impact of climate change on the persistent turbidity issue of a large dam reservoir in the temperate monsoon region
Hyungseok Park,
Sewoong Chung (),
Eunju Cho () and
Kyoungjae Lim
Additional contact information
Hyungseok Park: Chungbuk National University
Sewoong Chung: Chungbuk National University
Eunju Cho: Korea University
Kyoungjae Lim: Kangwon National University
Climatic Change, 2018, vol. 151, issue 3, No 1, 365-378
Abstract:
Abstract Long-term discharge of turbid water from reservoirs after flood events is a major socioenvironmental problem in many countries, including Korea. This study used a suite of mathematical models to simulate the fate of turbidity flows in the Soyanggang Reservoir in Korea, an important source of drinking water for the Seoul Capital Area, in response to extreme floods based on the Representative Concentration Pathway 4.5 climate scenario. It evaluated the effectiveness of the selective withdrawal facility (SWF), installed recently in the Soyanggang Reservoir to control persistent turbidity. Extreme floods with a maximum daily inflow rate greater than the historical maximum observed in 2006 were projected to occur four times in this century. The fate and transport of turbidity flows were highly influenced by both the thermal stability of the reservoir and the season in which the flood event occurred. Thus, SWF operations should consider the timing of extreme events (i.e., the imminence of the autumn turnover) to mitigate the impact of high turbidity on the water supply and downstream ecosystem. It was found to be ineffective under extreme events if these occurred in two consecutive years. Current reservoir operations, which rely heavily on the SWF, are likely to be inadequate to overcome the negative effects of extreme-turbidity events on reliably providing safe water supplies. Coping with the worst event expected to occur in the future would require additional countermeasures such as bypassing high-turbidity water.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10584-018-2322-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:151:y:2018:i:3:d:10.1007_s10584-018-2322-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-018-2322-z
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().