EconPapers    
Economics at your fingertips  
 

Assessing climate change impacts on California hydropower generation and ancillary services provision

Kate Forrest, Brian Tarroja (), Felicia Chiang, Amir AghaKouchak and Scott Samuelsen
Additional contact information
Kate Forrest: University of California Irvine
Brian Tarroja: University of California Irvine
Felicia Chiang: University of California Irvine
Amir AghaKouchak: University of California Irvine
Scott Samuelsen: University of California Irvine

Climatic Change, 2018, vol. 151, issue 3, No 3, 395-412

Abstract: Abstract Climate change is expected to significantly reshape hydropower generation in California. However, the impact on the ability of hydropower to provide reserve capacity that can provide on-demand, back-up electricity generation to stabilize the grid in the case of a contingency has not been explored. This study examined the impact of climate change-driven hydrologic shifts on hydropower contributions to generation and ancillary services. We used projections from four climate models under Representative Concentration Pathways (RCP) RCP4.5 and RCP8.5 to evaluate the impact of climate change conditions, comparing the future period 2046–2055 to the baseline 2000–2009, and observed a net increase of inflow into large hydropower units in northern California. However, as extreme events yield greater spillage, increased overall inflow did not necessarily yield increased generation. Additionally, higher winter generation and summer reservoir constraints resulted in decreases in the spinning reserve potential for both RCP scenarios. We also examined a regionally downscaled “long drought” scenario under RCP8.5 to assess the impact of an extended dry period on generation and spinning reserve bidding. The long drought scenario, developed as part of the California 4th Climate Assessment, involves rainfall congruent with 20-year historical dry spells in California under increased temperatures. In addition to decreased generation, the long drought scenario yielded a 41% reduction in spinning reserve bidding tied to a decline in reservoir levels. The decreased spinning reserve bidding from hydropower may require increased reliance on other electricity resources that can provide the same dynamic support to maintain grid stability under climate change.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://link.springer.com/10.1007/s10584-018-2329-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:151:y:2018:i:3:d:10.1007_s10584-018-2329-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-018-2329-5

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:151:y:2018:i:3:d:10.1007_s10584-018-2329-5