EconPapers    
Economics at your fingertips  
 

Climate and water balance change among public, private, and tribal lands within Greater Wild land Ecosystems across North Central USA

Arjun Adhikari () and Andrew J. Hansen ()
Additional contact information
Arjun Adhikari: Montana State University
Andrew J. Hansen: Montana State University

Climatic Change, 2019, vol. 152, issue 3, No 15, 567 pages

Abstract: Abstract The remaining wildlands in the North Central US include varying proportions of public, private, and tribal lands across water balance ecotones. These wildlands may be highly vulnerable changing climate impacting their ability to sustain biodiversity and ecosystem functioning. We quantified projected changes in growing season climate (temperature) and water balance (MI: moisture index) in Greater Wildland Ecosystems (GWEs) and land allocation types (public, private, and tribal lands) across Central Plains, Western Plains, and Western Mountains ecoregions of North Central US by using high-resolution climate data from GCM output of 1980–2005 to 2071–2099. We also tested for the evidence of systematic climatic bias on tribal lands, which are often claimed to be distributed non-randomly. We found that the historic temperature was lower for Western Mountains compared to Western and Central Plains’ GWEs. The climate model projected drier and warmer GWEs with a narrow difference in increased temperature (4.6 to 5.5 °C). The MI was projected to have the greatest decrease in Central Plains (− 28%) and the least in Western Plains (− -17%) GWEs. Our findings revealed that the GWEs and land allocation types are increasingly vulnerable to changing climate. We conclude that the distribution of tribal and public lands is not climatically biased in the historic period and the projected rates of change in climate are similar among land allocation types within each GWE. All GWEs, however, are projected to warm and undergo increasing aridity, which may challenge management to sustain ecological health and human wellbeing across all land allocation types.

Keywords: Growing season; Land allocation types; Tribal lands; Moisture index; Water balance (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10584-018-2351-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:152:y:2019:i:3:d:10.1007_s10584-018-2351-7

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-018-2351-7

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:152:y:2019:i:3:d:10.1007_s10584-018-2351-7