Has historic climate change affected the spatial distribution of water-limited wheat yield across Western Australia?
Andrew L. Fletcher (),
Chao Chen (),
Noboru Ota,
Roger A. Lawes and
Yvette M. Oliver
Additional contact information
Andrew L. Fletcher: CSIRO Agriculture and Food
Chao Chen: CSIRO Agriculture and Food
Noboru Ota: CSIRO Agriculture and Food
Roger A. Lawes: CSIRO Agriculture and Food
Yvette M. Oliver: CSIRO Agriculture and Food
Climatic Change, 2020, vol. 159, issue 3, No 3, 347-364
Abstract:
Abstract Climate change has likely impacted crop yield potential in major rain-fed crop-growing regions. However, the impact on the spatial pattern across regions is unclear. Here, the wheat belt of Western Australia was used as a case study to investigate the effect of historical climate change on the spatial patterns of water-limited crop yield. We used 117 years (1900–2016) of observed daily climate data on ~ 5 km × ~ 5 km grids to map and quantify the spatial-temporal changes in water-limited wheat yield simulated by the APSIM model. The climate data were split into four periods based on distinct changes in rainfall (Period 1, 1900–1934; Period 2, 1935–1974; Period 3, 1975–1999; and Period 4, 2000–2016). The results showed that the observed decreases in rainfall shifted the regional wheat yield potential towards the southwest of the wheat belt by an average of 70 km between the first and last periods. Observed increases in CO2 counteracted this by about half of this movement. Actual wheat yields achieved by farmers have not decreased, thanks to improvements in crop genetics and management, but the simulated decrease in water-limited yields has meant that actual yields in this region are not as high as they might have been. Future climate change is likely to continue to impact on water-limited crop yield and its spatial pattern in Western Australia. Cropping systems will need to continually evolve to cope with a changing climate, and every aspect of agronomy and genetics needs to be considered. Without continuing improvements, there will likely be a decrease in wheat yield across this cropping region.
Keywords: Wheat; Climate change; Water-limited yield; APSIM (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://link.springer.com/10.1007/s10584-020-02666-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:159:y:2020:i:3:d:10.1007_s10584-020-02666-w
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-020-02666-w
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().