EconPapers    
Economics at your fingertips  
 

Future wave-climate driven longshore sediment transport along the Indian coast

Piyali Chowdhury (), Manasa Ranjan Behera and Dominic E. Reeve
Additional contact information
Piyali Chowdhury: Indian Institute of Technology Bombay
Manasa Ranjan Behera: Indian Institute of Technology Bombay
Dominic E. Reeve: Swansea University

Climatic Change, 2020, vol. 162, issue 2, No 14, 405-424

Abstract: Abstract Longshore sediment transport is an important nearshore process that governs coastal erosion/accretion and in turn defines the orientation of coastlines. In this study, we assess the changes in longshore transport rates along the Indian coast due to the potential changes in wave parameters under the RCP4.5 climate scenario. The projected wave climate for two time slices, ‘near-term/present’ (2011–2040) and ‘mid-term/future’ (2041–2070) were used to investigate changes in the corresponding sediment transport rates. An empirical model accounting for major wave parameters, longshore current, resulting sediment transport and shoreline evolution was used. It was found that most of the Indian coast exhibited the same drift direction in both time slices, although changes in transport magnitude were present. To give a broad-brush characterisation of the coastline, the shoreline elements were classified as erosive, accretive or stable based on the comparative longshore transport rates of neighbouring elements. Similar characterisations, carried out for both time slices, showed that about 35% of the total coastline would remain unaffected due to the changing wave climate in the future (i.e. there is little to no change); about 20% is expected to ‘worsen’ (i.e. expected to undergo higher magnitudes of erosion wrt present rate) and 45% to ‘improve’ (i.e. expected to accrete/reach stability). It was also observed that the net annual transport rates pertaining to the future period are not expected to change significantly with respect to the current scenario. This indicates that the change in longshore transport rates arising from future changes in wave climate as represented by the RCP4.5 climate change scenario will have a broadly neutral effect.

Keywords: Climate change; Wave climate; Longshore sediment transport; Coastal vulnerability; Indian coast (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10584-020-02693-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:162:y:2020:i:2:d:10.1007_s10584-020-02693-7

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-020-02693-7

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:162:y:2020:i:2:d:10.1007_s10584-020-02693-7