Remaining error sources in bias-corrected climate model outputs
Jie Chen (),
François P. Brissette and
Daniel Caya
Additional contact information
Jie Chen: Wuhan University
François P. Brissette: Université du Québec
Daniel Caya: Université du Québec
Climatic Change, 2020, vol. 162, issue 2, No 23, 563-582
Abstract:
Abstract Bias correction methods have now emerged as the most commonly used approach when applying climate model outputs to impact studies. However, comparatively much fewer studies have looked at the limitations of bias correction caused by the very nature of the climate system. Two main sources of errors can affect the efficiency of bias correction over a future period: climate sensitivity and internal variability of the climate system. The former is related to differences in the forcing response between a climate model and the real climate system, whereas the latter results from the chaotic nature of the climate system. Using a “pseudo-reality” approach, this study investigates the contribution of these two sources of error to remaining biases of climate model after bias correction for future periods. The pseudo-reality approach uses one climate model as a reference dataset to correct other climate models. Results indicate that bias correction is beneficial over the reference period and in near future periods. However, large biases remain in future periods. The difference in climate sensitivities is the main contributor to the remaining biases in corrected data. Internal variability affects the near and far future similarly and may dominate in the near future, especially for precipitation. The impact of differences in climate sensitivity between the reference dataset and climate model data cannot be eliminated, while the impact of internal variability can be lessened by using a reference period for as long as possible to filter out low-frequency modes of variability.
Keywords: Bias correction; Climate sensitivity; Internal climate variability; Pseudo-reality; Climate change; Climate models; Impact studies (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s10584-020-02744-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:162:y:2020:i:2:d:10.1007_s10584-020-02744-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-020-02744-z
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().