EconPapers    
Economics at your fingertips  
 

Impact of climate change on storage conditions for major agricultural commodities across the contiguous United States

Kyle Lesinger, Di Tian (), Courtney P. Leisner and Alvaro Sanz-Saez
Additional contact information
Kyle Lesinger: Auburn University
Di Tian: Auburn University
Courtney P. Leisner: Auburn University
Alvaro Sanz-Saez: Auburn University

Climatic Change, 2020, vol. 162, issue 3, No 18, 1287-1305

Abstract: Abstract Changes in postharvest storage conditions due to climate change can directly affect energy usage and food supply and quality. However, no study has assessed climate change impacts on postharvest storage conditions in different climate regions over the contiguous United States (CONUS), a major agricultural producer around the world. The goal of this study is to assess the impact of climate change on cold storage conditions for the highest grossing crop for each of the nine climate regions within the CONUS. Storage degree days (SDDs) accumulate when ambient temperatures increase relative to crop storage base temperatures. Changes in SDDs and winter subperiod length were calculated for each regional crop using historical climate data and 20 downscaled global climate model projections. All regions project significant increases in SDD accumulation and decreases in winter subperiod length when compared with the historical reference period (1979–2005). Between years 2020 and 2080, Northwest and Northeast regions’ apples will be impacted most by SDD accumulation with yearly increases between 261 and 1004 SDDs. Between years 2020 and 2080, Midwest regions’ potatoes are projected to lose the most days of winter (24–39 days), and Southeast regions’ peanuts will experience the greatest decrease in winter length (17–23%). Increases in SDD accumulation and decreases in winter length will have direct implications on future food supply and storage costs. This study is the first comprehensive analysis of climate change impacts on the storage conditions for agricultural commodities over heterogenous climate conditions at national scale, providing useful information for long-term agricultural storage planning.

Keywords: Climate change; Postharvest crop storage; Storage degree days; Agricultural commodities; Contiguous United States (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10584-020-02873-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:162:y:2020:i:3:d:10.1007_s10584-020-02873-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-020-02873-5

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:162:y:2020:i:3:d:10.1007_s10584-020-02873-5