EconPapers    
Economics at your fingertips  
 

Recent changing characteristics of dry and wet spells in Canada

Yang Yang, Thian Yew Gan () and Xuezhi Tan
Additional contact information
Yang Yang: University of Alberta
Thian Yew Gan: University of Alberta
Xuezhi Tan: Sun Yat-sen University

Climatic Change, 2021, vol. 165, issue 3, No 1, 21 pages

Abstract: Abstract Under the possible impact of climate warming, recent changes in dry and wet spells have contributed significantly to climate-related hazards around the world. In this work, spatial and temporal variations in dry and wet spells over Canada are investigated using daily precipitation data from 1979 to 2018. The time-varying relationships between precipitation spells and large-scale climate anomalies are modeled using a nonstationary generalized extreme value (GEV) distribution and Bayesian quantile regression. Over the period 1979–2018, significant changes in dry and wet spells have been observed across Canada, particularly in the southern Canadian Prairies (CP), where both the number and duration of dry spells show positive trends. Dry and wet spells over many parts of Canada are nonstationary under the effects of the El Niño–Southern Oscillation (ENSO) and the Pacific–North American pattern (PNA), with PNA having stronger effects on annual maximum dry spells than ENSO, especially in the central CP and eastern Ontario. For western Canada, the influence of ENSO on dry spells tends to be relatively strong, especially for dry spells of high quantiles, as El Niño generally induces atmospheric moisture deficit. For central Canada, ENSO and PNA have a negative (positive) impact on the wet spell duration of low (high) quantiles. For eastern Canada, PNA is negatively correlated with the duration of wet spells, especially for wet spells of high quantiles. Therefore, a better understanding of the spatial and temporal variability in dry and wet spell return periods will be useful for the effective management of water resources, and for developing effective disaster mitigation measures against the possible social and economic impacts of climate-related hazards.

Keywords: Dry and wet spell; Generalized extreme value distribution (GEV); Non-stationarity; Large-scale climate patterns; Bayesian quantile regression; Canada (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10584-021-03046-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:165:y:2021:i:3:d:10.1007_s10584-021-03046-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-021-03046-8

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:165:y:2021:i:3:d:10.1007_s10584-021-03046-8