Interhemispheric asymmetry of climate change projections of boreal winter surface winds in CanESM5 large ensemble simulations
Bin Yu (),
Xuebin Zhang,
Guilong Li and
Wei Yu
Additional contact information
Bin Yu: Climate Research Division, Environment and Climate Change Canada
Xuebin Zhang: Climate Research Division, Environment and Climate Change Canada
Guilong Li: Climate Research Division, Environment and Climate Change Canada
Wei Yu: National Prediction Development, Environment and Climate Change Canada
Climatic Change, 2022, vol. 170, issue 3, No 5, 20 pages
Abstract:
Abstract A recent study of global wind power using an ensemble of ten CMIP5 climate simulations indicated an interhemispheric asymmetry of wind power changes over the twenty-first century, featured by power decreases across the Northern Hemisphere mid-latitudes and increases across the tropics and subtropics of the Southern Hemisphere. Here we analyze future projections of surface mean and extreme winds by means of a single-model initial-condition 50-member ensemble of climate simulations generated with CanESM5, the Canadian model participated in CMIP6. We analyze the ensemble mean and spread of boreal winter mean and extreme wind trends over the next half-century (2021–2070) and explore the contribution of internal climate variability to these trends. Surface wind speed is projected to mostly decrease in northern mid-low latitudes and southern mid-latitudes and increase in northern high latitudes and southern tropical and subtropical regions, with considerable regional variations. Large ensemble spreads are apparent, especially with remarkable differences over northern parts of South America and northern Russia. The interhemispheric asymmetry of wind projections is found in most ensemble members, and can be related to large-scale changes in surface temperature and atmospheric circulation. The extreme wind has similar structure of future projections, whereas its reductions tend to be more consistent over northern mid-latitudes. The projected mean and extreme wind changes are attributed to changes in both externally anthropogenic forced and internal climate variability generated components. The spread in wind projections is partially due to large-scale atmospheric circulation variability.
Keywords: Future projections; Surface mean and extreme winds; SMILE; CanESM5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10584-022-03313-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:170:y:2022:i:3:d:10.1007_s10584-022-03313-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-022-03313-2
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().