Dynamical downscaling projections of late twenty-first-century U.S. landfalling hurricane activity
Thomas R. Knutson (),
Joseph J. Sirutis,
Morris A. Bender,
Robert E. Tuleya and
Benjamin A. Schenkel
Additional contact information
Thomas R. Knutson: Geophysical Fluid Dynamics Laboratory/NOAA
Joseph J. Sirutis: Geophysical Fluid Dynamics Laboratory/NOAA
Morris A. Bender: Princeton University
Robert E. Tuleya: Old Dominion University
Benjamin A. Schenkel: University of Oklahoma
Climatic Change, 2022, vol. 171, issue 3, No 9, 23 pages
Abstract:
Abstract In this paper, U.S. landfalling tropical cyclone (TC) activity is projected for the late twenty-first century using a two-step dynamical downscaling framework. A regional atmospheric model, is run for 27 seasons, to generate tropical storm cases. Each storm case is -resimulated (up to 15 days) using the higher-resolution Geophysical Fluid Dynamics Laboratory hurricane model. Thirteen CMIP3 or CMIP5 climate change scenarios are explored. Robustness of projections is assessed using statistical significance tests and comparing changes across models. The proportion of TCs making U.S. landfall increases for the warming scenarios, due, in part, to an increases in the percentage of TC genesis near the U.S. coast and a change in climatological steering flows favoring more U.S. landfall events. The increases in U.S. landfall proportion leads to an increase in U.S. landfalling category 4–5 hurricane frequency, averaging about + 400% across the models; 10 of 13 models/ensembles project an increase (which is statistically significant in three of 13 models). We have only tentative confidence in this latter increase, which occurs despite a robust decrease in Atlantic basin category 1–5 hurricane frequency, no robust change in Atlantic basin category 4–5 and U.S. landfalling category 1–5 hurricane frequency, and no robust change in U.S. landfalling hurricane intensities. Rainfall rates, averaged within a 100-km radius of the storms, are projected to increase by about 18% for U.S. landfalling TCs. Important caveats to the study include low correlation (skill) for interannual variability of modeled vs. observed U.S. TC landfall frequency and model bias of excessive TC genesis near and east of the U.S. east coast in present-day simulations.
Keywords: Climate change; Hurricane activity; Tropical cyclone (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10584-022-03346-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:171:y:2022:i:3:d:10.1007_s10584-022-03346-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-022-03346-7
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().