Projected changes in heat wave characteristics over India
Neethu C () and
K V Ramesh ()
Additional contact information
Neethu C: CSIR Fourth Paradigm Institute
K V Ramesh: CSIR Fourth Paradigm Institute
Climatic Change, 2023, vol. 176, issue 10, No 14, 26 pages
Abstract:
Abstract Heat waves (HW) are increasing in intensity, frequency, and duration. The projected changes in the characteristics of HW at the regional level are essential input to develop mitigation strategies to minimize social risks in densely populated regions. In this study, we examine the projected spatiotemporal changes in heat wave characteristics under different climate change scenarios using simulations of Coupled Model Intercomparison Project phase 6 (CMIP6) in seven temperature homogeneous zones of India, i.e., North West (NW), North Central (NC), West Coast (WC), East Coast (EC), Interior Peninsula (IP), Western Himalaya (WH) and North East (NE). The results show that the area of occurrence of a daily maximum temperature above 43 $$^\circ $$ ∘ C is projected to increase about 16-fold over WC, 10-fold over EC, and in other zones in the range of 1-3 fold. The warm days are projected to increase fivefold over WC and threefold over NW, EC, IP, and WH. In India, HW days are projected to increase by 7-8 days in the near future (2025-2050) and by 10-17 days in the far future (2076-2100), while under SSP585 over WH (24 days), NW (19 days), and other zones 12-15 days in the far future. EC and WC are plausible to be more vulnerable under SSP370 and SSP585, with an increase in HW intensity (>1.5 $$^\circ $$ ∘ C). The area of occurrence of long-lasting heat waves over WC is expected to have a drastic increase of more than 20-fold under all scenarios, while increasing 12-fold over IP and 8-fold over NC, EC, and WH under SSP585. The projected HW days will be more intense in the coastal zones and more frequent over WH and NW.
Keywords: Heat waves; Climate scenarios; Extreme temperature; CMIP6 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10584-023-03618-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:176:y:2023:i:10:d:10.1007_s10584-023-03618-w
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-023-03618-w
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().