Projected change of East-Asian winter precipitation related to strong El Niño under the future emission scenarios
Yu Huang,
Hong-Li Ren (),
Jong-Seong Kug,
Run Wang and
Jingxin Li
Additional contact information
Yu Huang: Chinese Academy of Meteorological Sciences
Hong-Li Ren: Chinese Academy of Meteorological Sciences
Jong-Seong Kug: Pohang University of Science and Technology
Run Wang: Chinese Academy of Meteorological Sciences
Jingxin Li: Chinese Academy of Meteorological Sciences
Climatic Change, 2023, vol. 176, issue 7, No 2, 21 pages
Abstract:
Abstract It has been demonstrated that the increased CO2 concentration would influence El Niño and its connected precipitation anomaly over East Asia (EA). Based on the model simulations from CMIP5 and CMIP6, this study investigates projected change of the boreal winter precipitation anomaly in EA during strong Eastern-Pacific type El Niño (EP-El Niño) responding to different emission scenarios and further examines the possible mechanisms. Features of the EA precipitation anomaly associated with EP-El Niño can be reasonably captured by most of the CMIP5 models, but not substantially improved by the CMIP6 models. As emissions increase, the positive precipitation anomalies over the northern EA (NEA) during strong EP-El Niños tend to be more intense, while the precipitation anomalies decrease over southern EA (SEA). Such a change pattern is generally consistent between CMIP5 and CMIP6 models, which can be intimately related to the changes of circulation and moisture transport. That is, the changed cyclonic (anticyclonic) anomaly pattern over NEA (SEA) is favorable (unfavorable) for the formation of precipitation pattern with the associated enhanced (weakened) moisture supply anomaly. Further analysis shows that the strong EP-El Niño itself acts to increase precipitation anomaly over most of NEA compared with historical simulations, while its induced combination mode contributes to the relatively large inconsistency over SEA between CMIP5 and CMIP6.
Keywords: Precipitation anomaly change; Strong EP-El Niño; Mechanisms; Circulation change; Moisture budget; Combination mode (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10584-023-03551-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:176:y:2023:i:7:d:10.1007_s10584-023-03551-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-023-03551-y
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().