A stakeholder-guided marine heatwave hazard index for fisheries and aquaculture
Jules B. Kajtar (),
Neil J. Holbrook,
Anna Lyth,
Alistair J. Hobday,
Craig N. Mundy and
Sarah C. Ugalde
Additional contact information
Jules B. Kajtar: University of Tasmania
Neil J. Holbrook: University of Tasmania
Anna Lyth: RED Sustainability Consultants
Alistair J. Hobday: Commonwealth Scientific and Industrial Research Organisation
Craig N. Mundy: University of Tasmania
Sarah C. Ugalde: University of Tasmania
Climatic Change, 2024, vol. 177, issue 2, No 9, 22 pages
Abstract:
Abstract Marine heatwaves pose an increasing threat to fisheries and aquaculture around the world under climate change. However, the threat has not been estimated for the coming decades in a form that meets the needs of these industries. Tasmanian fisheries and aquaculture in southeast Australia have been severely impacted by marine heatwaves in recent years, especially the oyster, abalone, and salmon industries. In a series of semi-structured interviews with key Tasmanian fishery and aquaculture stakeholders, information was gathered about the following: (i) the impacts they have experienced to date from marine heatwaves, (ii) their planning for future marine heatwaves, and (iii) the information that would be most useful to aid planning. Using CMIP6 historical and future simulations of sea surface temperatures around Tasmania, we developed a marine heatwave hazard index guided by these stakeholder conversations. The region experienced a severe marine heatwave during the austral summer of 2015/16, which has been used here as a reference point to define the index. Our marine heatwave hazard index shows that conditions like those experienced in 2015/16 are projected to occur approximately 1-in-5 years by the 2050s under a low emissions scenario (SSP1-2.6) or 1-in-2 years under a high emissions scenario (SSP5-8.5). Increased frequency of marine heatwaves will likely reduce productivity by both direct (mortality) and in-direct (ecosystem change, greater incidence of disease) impacts on target species. The illustrative hazard index is one step towards a marine heatwave risk index, which would also need to consider aspects of exposure and vulnerability to be of greater utility to stakeholders.
Keywords: Marine heatwaves; Hazards; CMIP6; Stakeholders; Aquaculture; Fisheries (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10584-024-03684-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:177:y:2024:i:2:d:10.1007_s10584-024-03684-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-024-03684-8
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().