Multi-model ensemble of frost risks across East Asia (1850–2100)
Jenny Richards () and
Peter Brimblecombe ()
Additional contact information
Jenny Richards: Oxford University
Peter Brimblecombe: National Sun Yat-sen University
Climatic Change, 2024, vol. 177, issue 4, No 12, 17 pages
Abstract:
Abstract Frost events can cause the deterioration of a wide range of heritage materials, including stone, brick and earth. In a warming world, the frequency and location of frost events is likely to change, affecting the conservation strategies required at heritage sites. We use a multi-model ensemble approach to investigate three types of frost events in East Asia: freeze–thaw cycles; deep frost days and wet frosts. The study uses nine CMIP6 models for the period 1850 to 2100, with future projections run under the SPS585 scenario. Additional analysis is undertaken for five specific 2° ✕ 2° areas located across East Asia. The three frost event parameters are spatially and temporally distinct. A decrease in all three frost parameters is found in Japan, South Korea and East China, with some areas projected to have no frost events by the end of the twenty-first century. However, Northwest China is distinctive as wet frosts are projected to increase over the twenty-first century, while on the Tibetan plateau of Southwest China, freeze–thaw cycles are projected to increase. This suggests that except in some localised regions, heritage managers can focus on risks other than frost weathering in developing plans to address climate change. Graphical Abstract
Keywords: Cultural heritage; Climate change; Multi-model ensemble; Freezing events; Frost damage; CMIP6 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10584-024-03723-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:177:y:2024:i:4:d:10.1007_s10584-024-03723-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-024-03723-4
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().