Sequential learning of climate change via a physical-parameter-based state-space model and Bayesian inference
Yuchuan Lai () and
Matteo Pozzi ()
Additional contact information
Yuchuan Lai: Tetra Tech
Matteo Pozzi: Carnegie Mellon University
Climatic Change, 2024, vol. 177, issue 6, No 18, 22 pages
Abstract:
Abstract Flexible decision-making strategies provide an alternative option for climate adaptation by considering future learning of climate change. A physical-parameter-based state-space model (SSM) with Bayesian inference is developed in this work to investigate reduction of uncertainty from more observations and facilitate flexible adaptation strategies. This SSM method integrates a two-layer, energy-balance model to describe global mean temperature response, models multiple sources of uncertainty such as climate sensitivity and aerosol forcing, and uses the informative priors from processing Global Climate Model simulations. Focusing on global mean temperature anomaly, which has important implications on policies and related impacts, the SSM is assessed by applying it to both historical and pseudo-observations (i.e., model simulations used as observations), assessing the posterior probabilities of physical parameters, and evaluating reduction of projection uncertainty. Some limitations of the method are observed, such as the sensitivity related to the adopted forcing time series. Comparing the end-of-the-century projections of global mean temperature sequentially made at year 2020, 2050, and 2080 using pseudo-observations, the reduction of uncertainty from the SSM is evident: the range of 95% prediction intervals on average decreases from 1.9°C in 2020 to 1.0°C in 2050, and to 0.6°C in 2080 under the Shared Socioeconomic Pathway (SSP) 2–4.5 (or from 2.7°C, to 1.2°C and to 0.7°C under SSP5-8.5). These results illustrate how the SSM framework provides probabilistic projections of climate change that can be sequentially updated with more observations, and this process can facilitate flexible adaptation strategies.
Keywords: Sequential Bayesian inference; State-space model; Climate projection; Climate change uncertainty (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10584-024-03739-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:177:y:2024:i:6:d:10.1007_s10584-024-03739-w
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-024-03739-w
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().