Environmental impacts from the widespread implementation of ocean thermal energy conversion
Anna G. Nickoloff (),
Sophia T. Olim,
Michael Eby and
Andrew J. Weaver
Additional contact information
Anna G. Nickoloff: University of Victoria
Sophia T. Olim: University of Victoria
Michael Eby: University of Victoria
Andrew J. Weaver: University of Victoria
Climatic Change, 2025, vol. 178, issue 5, No 16, 21 pages
Abstract:
Abstract Ocean thermal energy conversion (OTEC) is a renewable energy system that could potentially displace significant amounts of fossil fuel-generated electricity. This study presents numerous multi-century simulations of the University of Victoria Earth System Climate Model, a coupled climate-carbon cycle model, to better understand the global-scale environmental impacts of the widespread implementation of OTEC at varying total power levels (3, 5, 7, 10, and 15 TW). Environmental impacts include reduced warming of the sea surface by up to 3.1 ºC, increased heat uptake at intermediate depths, and enhanced biological production compared to a fossil fuel intensive control scenario. At year 2100, OTEC-induced mixing contributes roughly 60% of the relative cooling, while the remainder is from OTEC-related emission reductions. Once OTEC is terminated, all relative cooling is caused by accumulated emissions reductions. If acting alone, the residual effect of OTEC-induced mixing would contribute to a minor relative warming of the sea surface. The effect of OTEC on the expansion of known oxygen minimum zones was minimal. In many circumstances, OTEC deployment opposes the projected impacts of climate change. Relative to a high carbon emissions control scenario, OTEC deployment is associated with less surface warming, a smaller increase in surface water pCO2, a suppression of ocean acidification, and significantly smaller declines in the strength of the Atlantic Meridional Overturning Circulation. Despite the potential engineering challenges and economic costs, early indications suggest that the large-scale implementation of OTEC could make a substantial contribution to climate change mitigation.
Keywords: Ocean Thermal Energy Conversion (OTEC); Renewable energy systems; Earth system modelling; Climate change mitigation; Environmental impact assessment (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10584-025-03944-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:178:y:2025:i:5:d:10.1007_s10584-025-03944-1
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-025-03944-1
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().