EconPapers    
Economics at your fingertips  
 

Unveiling responses of plant performance and vegetation cover to shifting snow regimes: a meta-analysis

Cai Yihan (), Pamela H. Templer and Kobayashi Makoto
Additional contact information
Cai Yihan: Hokkaido University
Pamela H. Templer: Boston University
Kobayashi Makoto: Hokkaido University

Climatic Change, 2025, vol. 178, issue 6, No 10, 18 pages

Abstract: Abstract Snow cover is a critical factor controlling plant performance, such as survival, growth, and biomass, and vegetation cover in regions with seasonal snow (e.g., high-latitude and high-elevation regions), due to its influence on the timing and length of the growing season, insulation effect during winter, and biotic and abiotic environmental factors. Therefore, changes in snow cover driven by rising temperatures and shifting precipitation patterns are expected to alter plant performance and vegetation cover. Despite the rapid increase in research on this topic in recent decades, there is still a lack of studies that quantitatively elucidate how plant performance and vegetation cover respond to shifting snow cover across snowy regions. Additionally, no comprehensive study has yet quantitatively examined these responses across regions, ecosystems, and plant functional types. Here, we conducted a meta-analysis synthesizing data from 54 snow cover manipulation studies conducted in both the field and laboratory across snowy regions to detect how plants performance and vegetation cover respond to decreased or increased snow cover. Our results demonstrate that plant survival, aboveground biomass, and belowground biomass exhibited significant decreases in response to decreased snow cover, with rates of survival having the greatest decrease. In response to increased snow cover, plant survival, growth, biomass and vegetation cover tended to increase, except for plant belowground length growth and biomass, which showed significant decreases. Additionally, our quantitative analysis of plant responses to changes in snow cover across regions, ecosystems, and plant functional types revealed that cold regions with thin snow cover, tundra and forest ecosystems, and woody species are particularly vulnerable to snow cover reduction. Overall, this study demonstrates the strong controls that snow cover exerts on plant performance, providing insights into the dynamics of snow-covered ecosystems under changing winter climatic conditions.

Keywords: Snow melt; Snow manipulation; Above-below-ground biomass; Freeze-thaw cycles; Winter ecology; Climate change (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10584-025-03955-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:178:y:2025:i:6:d:10.1007_s10584-025-03955-y

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-025-03955-y

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-06-25
Handle: RePEc:spr:climat:v:178:y:2025:i:6:d:10.1007_s10584-025-03955-y