Neural Network Model Selection for Financial Time Series Prediction
Francesco Virili () and
Bernd Freisleben ()
Additional contact information
Francesco Virili: University of Siegen
Bernd Freisleben: University of Siegen
Computational Statistics, 2001, vol. 16, issue 3, No 10, 463 pages
Abstract:
Summary Can neural network model selection be guided by statistical procedures such as hypothesis tests, information criteria and cross-validation? Recently, Anders and Korn (1999) proposed five neural network model specification strategies based on different statistical procedures. In this paper, we use and adapt the Anders-Korn framework to find appropriate neural network models for financial time series prediction. The most important new issue in this context is the specification of the dynamic structure of the models, i.e. the selection of the lagged values of the input time series. A linear model is built with full dynamic structure, then its possible nonlinear extensions are tested using a statistical procedure inspired by the Anders-Korn approach. Promising results are obtained with an application to predict the monthly time series of mortgage loans purchased in The Netherlands.
Keywords: neural networks; model selection; time series (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s001800100078 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:16:y:2001:i:3:d:10.1007_s001800100078
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s001800100078
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().