Boxplot for circular variables
Ali Abuzaid,
Ibrahim Mohamed () and
Abdul Hussin
Computational Statistics, 2012, vol. 27, issue 3, 392 pages
Abstract:
A boxplot is a simple and flexible graphical tool which has been widely used in exploratory data analysis. One of its main applications is to identify extreme values and outliers in a univariate data set. While the boxplot is useful for a real line data set, it is not suitable for a circular data set due to the fact that there is no natural ordering of circular observations. In this paper, we propose a boxplot version for a circular data set, called the circular boxplot. The problem of finding the appropriate circular boxplot criterion of the form ν × CIQR, where CIQR is the circular interquartile range and ν is the resistant constant, is investigated through a simulation study. As might be expected, we find that the choice of ν depends on the value of the concentration parameter κ. Another simulation study is done to investigate the performance of the circular boxplot in detecting a single outlier. Our results show that the circular boxplot performs better when both the value of κ and the sample size are larger. We develop a visual display for the circular boxplot in S-Plus and illustrate its application using two real circular data sets. Copyright Springer-Verlag 2012
Keywords: Circular boxplot; Boxplot; Resistant constant; Outlier; Overlapping (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-011-0261-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:27:y:2012:i:3:p:381-392
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-011-0261-5
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().