Rayleigh projection depth
Yonggang Hu (),
Qiang Li (),
Yong Wang and
Yi Wu
Computational Statistics, 2012, vol. 27, issue 3, 523-530
Abstract:
In this paper, a novel projection-based depth based on the Rayleigh quotient, Rayleigh projection depth (RPD), is proposed. Although, the traditional projection depth (PD) has many good properties, it is indeed not practical due to its difficult computation, especially for the high-dimensional data sets. Defined on the mean and variance of the data sets, the new depth, RPD, can be computed directly by solving a problem of generalized eigenvalue. Meanwhile, we extend the RPD as generalized RPD (GRPD) to make it suitable for the sparse samples with singular covariance matrix. Theoretical results show that RPD is also an ideal statistical depth, though it is less robust than PD. Copyright Springer-Verlag 2012
Keywords: Projection depth; Rayleigh quotient; Data depth; Statistical depth; 62H05; 62H30 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-011-0273-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:27:y:2012:i:3:p:523-530
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-011-0273-1
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().