Sparse principal components by semi-partition clustering
Doyo Enki () and
Nickolay Trendafilov ()
Computational Statistics, 2012, vol. 27, issue 4, 605-626
Abstract:
A cluster-based method for constructing sparse principal components is proposed. The method initially forms clusters of variables, using a new clustering approach called the semi-partition, in two steps. First, the variables are ordered sequentially according to a criterion involving the correlations between variables. Then, the ordered variables are split into two parts based on their generalized variance. The first group of variables becomes an output cluster, while the second one—input for another run of the sequential process. After the optimal clusters have been formed, sparse components are constructed from the singular value decomposition of the data matrices of each cluster. The method is applied to simple data sets with smaller number of variables (p) than observations (n), as well as large gene expression data sets with p ≫ n. The resulting cluster-based sparse principal components are very promising as evaluated by objective criteria. The method is also compared with other existing approaches and is found to perform well. Copyright Springer-Verlag 2012
Keywords: Cluster-based; CSPC; Gene expression; Nonzero-loading; k-means (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-011-0280-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:27:y:2012:i:4:p:605-626
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-011-0280-2
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().