Sequential monitoring of a Bernoulli sequence when the pre-change parameter is unknown
Gordon Ross (),
Dimitris Tasoulis and
Niall Adams
Computational Statistics, 2013, vol. 28, issue 2, 463-479
Abstract:
The task of monitoring for a change in the mean of a sequence of Bernoulli random variables has been widely studied. However most existing approaches make at least one of the following assumptions, which may be violated in many real-world situations: (1) the pre-change value of the Bernoulli parameter is known in advance, (2) computational efficiency is not paramount, and (3) enough observations occur between change points to allow asymptotic approximations to be used. We develop a novel change detection method based on Fisher’s exact test which does not make any of these assumptions. We show that our method can be implemented in a computationally efficient manner, and is hence suited to sequential monitoring where new observations are constantly being received over time. We assess our method’s performance empirically via using simulated data, and find that it is comparable to the optimal CUSUM scheme which assumes both pre- and post-change values of the parameter to be known. Copyright Springer-Verlag 2013
Keywords: Binomial change detection; Process control (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-012-0311-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:28:y:2013:i:2:p:463-479
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-012-0311-7
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().