Latent variable models for ordinal data by using the adaptive quadrature approximation
Silvia Cagnone and
Paola Monari
Computational Statistics, 2013, vol. 28, issue 2, 597-619
Abstract:
Latent variable models for ordinal data represent a useful tool in different fields of research in which the constructs of interest are not directly observable so that one or more latent variables are required to reduce the complexity of the data. In these cases problems related to the integration of the likelihood function of the model can arise. Indeed analytical solutions do not exist and in presence of several latent variables the most used classical numerical approximation, the Gauss Hermite quadrature, cannot be applied since it requires several quadrature points per dimension in order to obtain quite accurate estimates and hence the computational effort becomes not feasible. Alternative solutions have been proposed in the literature, like the Laplace approximation and the adaptive quadrature. Different studies demonstrated the superiority of the latter method particularly in presence of categorical data. In this work we present a simulation study for evaluating the performance of the adaptive quadrature approximation for a general class of latent variable models for ordinal data under different conditions of study. A real data example is also illustrated. Copyright Springer-Verlag 2013
Keywords: Generalized linear latent variable model; Ordinal data; Adaptive Gauss Hermite quadrature; EM algorithm (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-012-0319-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:28:y:2013:i:2:p:597-619
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-012-0319-z
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().