An efficient ECM algorithm for maximum likelihood estimation in mixtures of t-factor analyzers
Wan-Lun Wang and
Tsung-I Lin ()
Computational Statistics, 2013, vol. 28, issue 2, 769 pages
Abstract:
Mixture of t factor analyzers (MtFA) have been shown to be a sound model-based tool for robust clustering of high-dimensional data. This approach, which is deemed to be one of natural parametric extensions with respect to normal-theory models, allows for accommodation of potential noise components, atypical observations or data with longer-than-normal tails. In this paper, we propose an efficient expectation conditional maximization (ECM) algorithm for fast maximum likelihood estimation of MtFA. The proposed algorithm inherits all appealing properties of the ordinary EM algorithm such as its stability and monotonicity, but has a faster convergence rate since its CM steps are governed by a much smaller fraction of missing information. Numerical experiments based on simulated and real data show that the new procedure outperforms the commonly used EM and AECM algorithms substantially in most of the situations, regardless of how the convergence speed is assessed by the computing time or number of iterations. Copyright Springer-Verlag 2013
Keywords: AECM algorithm; ECM algorithm; EM algorithm; Maximum likelihood estimation; MFA; MtFA (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-012-0327-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:28:y:2013:i:2:p:751-769
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-012-0327-z
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().