EconPapers    
Economics at your fingertips  
 

Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity

Cathy W. S. Chen () and Richard Gerlach

Computational Statistics, 2013, vol. 28, issue 3, 1103-1131

Abstract: Compared to the conditional mean or median, conditional quantiles provide a more comprehensive picture of a variable in various scenarios. A semi-parametric quantile estimation method for a double threshold auto-regression with exogenous regressors and heteroskedasticity is considered, allowing representation of both asymmetry and volatility clustering. As such, GARCH dynamics with nonlinearity are added to a nonlinear time series regression model. An adaptive Bayesian Markov chain Monte Carlo scheme, exploiting the link between the quantile loss function and the asymmetric-Laplace distribution, is employed for estimation and inference, simultaneously estimating and accounting for nonlinear heteroskedasticity plus unknown threshold limits and delay lags. A simulation study illustrates sampling properties of the method. Two data sets are considered in the empirical applications: modelling daily maximum temperatures in Melbourne, Australia; and exploring dynamic linkages between financial markets in the US and Hong Kong. Copyright Springer-Verlag 2013

Keywords: Asymmetric Laplace distribution; Nonlinear time series; MCMC; GARCH; Quantile regression (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-012-0346-9 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:28:y:2013:i:3:p:1103-1131

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-012-0346-9

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:28:y:2013:i:3:p:1103-1131