Extracting informative variables in the validation of two-group causal relationship
Ying-Chao Hung () and
Neng-Fang Tseng ()
Computational Statistics, 2013, vol. 28, issue 3, 1167 pages
Abstract:
The validation of causal relationship between two groups of multivariate time series data often requires the precedence knowledge of all variables. However, in practice one finds that some variables may be negligible in describing the underlying causal structure. In this article we provide an explicit definition of “non-informative variables” in a two-group causal relationship and introduce various automatic computer-search algorithms that can be utilized to extract informative variables based on a hypothesis testing procedure. The result allows us to represent a simplified causal relationship by using minimum possible information on two groups of variables. Copyright Springer-Verlag 2013
Keywords: Causal relationship; Vector autoregression model; Informative variables; Modified Wald test; Automatic computer-search algorithm (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-012-0351-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:28:y:2013:i:3:p:1151-1167
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-012-0351-z
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().