Empirical likelihood method for multivariate Cox regression
Ming Zheng and
Wen Yu ()
Computational Statistics, 2013, vol. 28, issue 3, 1267 pages
Abstract:
A unified empirical likelihood approach for three Cox-type marginal models dealing with multiple event times, recurrent event times and clustered event times is proposed. The resulting log-empirical likelihood ratio test statistics are shown to possess chi-squared limiting distributions. When making inferences, there is no need to solve estimating equations nor to estimate limiting covariance matrices. The optimal linear combination property for over-identified empirical likelihood is preserved by the proposed method and the property can be used to improve estimation efficiency. In addition, an adjusted empirical likelihood approach is applied to reduce the error rates of the proposed empirical likelihood ratio tests. The adjusted empirical likelihood tests could outperform the existing Wald tests for small to moderate sample sizes. The proposed approach is illustrated by extensive simulation studies and two real examples. Copyright Springer-Verlag 2013
Keywords: Clustered event times; Empirical likelihood; Marginal model; Multiple event times; Over-identified; Proportional hazards model; Recurrent event times (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-012-0348-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:28:y:2013:i:3:p:1241-1267
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-012-0348-7
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().