Estimation of intra-cluster correlation coefficient via the failure of Bartlett’s second identity
Tsung-Shan Tsou () and
Wan-Chen Chen ()
Computational Statistics, 2013, vol. 28, issue 4, 1698 pages
Abstract:
A new means of estimating the correlation coefficient for cluster binary data in the regression settings is introduced. The creation of this method is founded upon the violation of Bartlett’s second identity when adopting the binomial distributions to model binary data that are correlated. The new methodology applies to any sensible link functions that connect the success probability and covariates. One can easily implement the procedure by using any statistical software providing the naïve and the sandwich covariance matrices for regression parameter estimates. Simulations and real data analyses are used to demonstrate the efficacy of our new procedure. Copyright Springer-Verlag Berlin Heidelberg 2013
Keywords: Fisher information matrix; Bartlett’s second identity; Correlated binary data; Correlation coefficient (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-012-0372-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:28:y:2013:i:4:p:1681-1698
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-012-0372-7
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().