EconPapers    
Economics at your fingertips  
 

No effect tests in regression on functional variable and some applications to spectrometric studies

Laurent Delsol ()

Computational Statistics, 2013, vol. 28, issue 4, 1775-1811

Abstract: Recent advances in structural tests for regression on functional variable are used to construct test of no effect. Various bootstrap procedures are considered and compared in a simulation study. These tests are finally applied on real world datasets dealing with spectrometric studies using the information collected during this simulation study. The results obtained for the Tecator dataset are relevant and corroborated by former studies. The study of a smaller dataset concerning corn samples shows the efficiency of our method on small size samples. Getting information on which derivatives (or which parts) of the spectrometric curves have a significant effect allows to get a better understanding of the way spectrometric curves influence the quantity to predict. In addition, a better knowledge of the structure of the underlying regression model may be useful to construct a relevant predictor. Copyright Springer-Verlag Berlin Heidelberg 2013

Keywords: No effect test; Regression; Functional variable; Bootstrap; Spectrometric curves (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-012-0378-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:28:y:2013:i:4:p:1775-1811

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-012-0378-1

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:28:y:2013:i:4:p:1775-1811