Inference for vast dimensional elliptical distributions
Yves Dominicy,
Hiroaki Ogata () and
David Veredas ()
Computational Statistics, 2013, vol. 28, issue 4, 1853-1880
Abstract:
We propose a quantile–based method to estimate the parameters of an elliptical distribution, and a battery of tests for model adequacy. The method is suitable for vast dimensions as the estimators for location and dispersion have closed–form expressions, while estimation of the tail index boils down to univariate optimizations. The tests for model adequacy are for the null hypothesis of correct specification of one or several level contours. A Monte Carlo study to three distributions (Gaussian, Student–t and elliptical stable) for dimensions 20, 200 and 2000 reveals the goodness of the method, both in terms of computational time and finite samples. An empirical application to financial data illustrates the method. Copyright Springer-Verlag Berlin Heidelberg 2013
Keywords: Quantiles; Elliptical family; Simulations; Heavy tails (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-012-0384-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:28:y:2013:i:4:p:1853-1880
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-012-0384-3
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().