Proposal adaptation in simulated annealing for continuous optimization problems
Antti Solonen ()
Computational Statistics, 2013, vol. 28, issue 5, 2049-2065
Abstract:
In recent years, adaptive Markov Chain Monte Carlo (MCMC) methods have become a standard tool for Bayesian parameter estimation. In adaptive MCMC, the past iterations are used to tune the proposal distribution of the algorithm. The same adaptation mechanisms can be used in Simulated Annealing (SA), a popular optimization method based on MCMC. The difficulty in using adaptation directly in SA is that the target function changes along the iterations in the annealing process, and the adaptation should keep up with the annealing. In this paper, a mechanism for automatically tuning the proposal distribution in SA is proposed. The approach is based on the Adaptive Metropolis algorithm of Haario et al. (Bernoulli 7(2):223–242, 2001 ), combined with a weighting mechanism to account for the cooling target. The proposed adaptation mechanism does not add any computational complexity to the problem in terms of objective function evaluations. The effect of adaptation is demonstrated using two benchmark problems, showing that the proposed adaptation mechanism can significantly improve optimization results compared to non-adaptive SA. The approach is presented for continuous optimization problems and generalization to integer and mixed-integer problems is a topic of future research. Copyright Springer-Verlag Berlin Heidelberg 2013
Keywords: Adaptive MCMC; Importance sampling; Optimization; Simulated annealing (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-013-0395-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:28:y:2013:i:5:p:2049-2065
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-013-0395-8
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().