EconPapers    
Economics at your fingertips  
 

Principal component histograms from interval-valued observations

J. Le-Rademacher () and L. Billard

Computational Statistics, 2013, vol. 28, issue 5, 2117-2138

Abstract: The focus of this paper is to propose an approach to construct histogram values for the principal components of interval-valued observations. Le-Rademacher and Billard (J Comput Graph Stat 21:413–432, 2012 ) show that for a principal component analysis on interval-valued observations, the resulting observations in principal component space are polytopes formed by the convex hulls of linearly transformed vertices of the observed hyper-rectangles. In this paper, we propose an algorithm to translate these polytopes into histogram-valued data to provide numerical values for the principal components to be used as input in further analysis. Other existing methods of principal component analysis for interval-valued data construct the principal components, themselves, as intervals which implicitly assume that all values within an observation are uniformly distributed along the principal components axes. However, this assumption is only true in special cases where the variables in the dataset are mutually uncorrelated. Representation of the principal components as histogram values proposed herein more accurately reflects the variation in the internal structure of the observations in a principal component space. As a consequence, subsequent analyses using histogram-valued principal components as input result in improved accuracy. Copyright Springer-Verlag Berlin Heidelberg 2013

Keywords: Interval-valued input data; Histogram-valued output data; Principal component analysis; Linear transformation; Polytopes (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-013-0399-4 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:28:y:2013:i:5:p:2117-2138

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-013-0399-4

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:28:y:2013:i:5:p:2117-2138