Minimum Hellinger distance estimation for a two-sample semiparametric cure rate model with censored survival data
Yayuan Zhu (),
Jingjing Wu () and
Xuewen Lu ()
Computational Statistics, 2013, vol. 28, issue 6, 2495-2518
Abstract:
Efficiency and robustness are two essential concerns on statistical estimation. Unfortunately, it was widely accepted that there existed a contradiction between achieving efficiency and robustness simultaneously. For parametric models with complete data, the minimum Hellinger distance estimation introduced by Beran (Ann Stat 5:445–463, 1977 ) has been shown that it can reconcile this contradiction. Because data in biostatistics, actuarial science or economics are often subject to censoring and even involve a fraction of long-term survivors, our study aims to extend the minimum Hellinger distance estimation to a two-sample semiparametric cure rate model with right-censored survival data. The asymptotic properties such as consistency, efficiency, normality, and robustness of the proposed estimator have been considered and its performances are examined via simulation studies in comparison with those of the maximum semiparametric conditional likelihood estimator introduced by Shen et al. (J Am Stat Assoc 102:1235–1244, 2007 ). Finally, our method is illustrated by analyzing a real data set: Bone Marrow Transplant Data. Copyright Springer-Verlag Berlin Heidelberg 2013
Keywords: Hellinger distance; Kernel estimation; Right censoring; Robustness; Two-sample semiparametric model (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-013-0416-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:28:y:2013:i:6:p:2495-2518
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-013-0416-7
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().