Asymptotic properties of the Bayes modal estimators of item parameters in item response theory
Haruhiko Ogasawara ()
Computational Statistics, 2013, vol. 28, issue 6, 2559-2583
Abstract:
Asymptotic cumulants of the Bayes modal estimators of item parameters using marginal likelihood in item response theory are derived up to the fourth order with added higher-order asymptotic variances under possible model misspecification. Among them, only the first asymptotic cumulant and the higher-order asymptotic variance for an estimator are different from those by maximum likelihood. Corresponding results for studentized Bayes estimators and asymptotically bias-corrected ones are also obtained. It was found that all the asymptotic cumulants of the bias-corrected Bayes estimator up to the fourth order and the higher-order asymptotic variance are identical to those by maximum likelihood with bias correction. Numerical illustrations are given with simulations in the case when the 2-parameter logistic model holds. In the numerical illustrations, the maximum likelihood and Bayes estimators are used, where the same independent log-normal priors are employed for discriminant parameters and the hierarchical model is adopted for the prior of difficulty parameters. Copyright Springer-Verlag Berlin Heidelberg 2013
Keywords: Asymptotic cumulants; Higher-order asymptotic variances; Marginal maximum likelihood; Bayes modal; Logistic models; Mean square errors (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-013-0418-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:28:y:2013:i:6:p:2559-2583
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-013-0418-5
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().