The power of bootstrap tests of cointegration rank
Niklas Ahlgren () and
Jan Antell
Computational Statistics, 2013, vol. 28, issue 6, 2719-2748
Abstract:
Bootstrap likelihood ratio tests of cointegration rank are commonly used because they tend to have rejection probabilities that are closer to the nominal level than the rejection probabilities of asymptotic tests. The effect of bootstrapping the test on its power is largely unknown. We show that a new computationally inexpensive procedure can be applied to the estimation of the power function of the bootstrap test of cointegration rank. The bootstrap test is found to have a power function close to that of the level-adjusted asymptotic test. The bootstrap test therefore estimates the level-adjusted power of the asymptotic test highly accurately. The bootstrap test may have low power to reject the null hypothesis of cointegration rank zero, or underestimate the cointegration rank. An empirical application to Euribor interest rates is provided as an illustration of the findings. Copyright Springer-Verlag Berlin Heidelberg 2013
Keywords: Bootstrap; Cointegration; Euribor interest rates; Likelihood ratio test; Test power (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-013-0425-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:28:y:2013:i:6:p:2719-2748
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-013-0425-6
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().