Smoothing noisy data for irregular regions using penalized bivariate splines on triangulations
Lan Zhou () and
Huijun Pan ()
Computational Statistics, 2014, vol. 29, issue 1, 263-281
Abstract:
The penalized spline method has been widely used for estimating univariate smooth functions based on noisy data. This paper studies its extension to the two-dimensional case. To accommodate the need of handling data distributed on irregular regions, we consider bivariate splines defined on triangulations. Penalty functions based on the second-order derivatives are employed to regularize the spline fit and generalized cross-validation is used to select the penalty parameters. A simulation study shows that the penalized bivariate spline method is competitive to some well-established two-dimensional smoothers. The method is also illustrated using a real dataset on Texas temperature. Copyright Springer-Verlag Berlin Heidelberg 2014
Keywords: Bivariate smoothing; Generalized cross-validation; Nonparametric function estimation; Roughness penalty; P-splines (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-013-0448-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:29:y:2014:i:1:p:263-281
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-013-0448-z
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().