Bayesian confidence intervals for probability of default and asset correlation of portfolio credit risk
Yi-Ping Chang () and
Chih-Tun Yu ()
Computational Statistics, 2014, vol. 29, issue 1, 361 pages
Abstract:
We derive Bayesian confidence intervals for the probability of default (PD), asset correlation (Rho), and serial dependence (Theta) for low default portfolios (LDPs). The goal is to reduce the probability of underestimating credit risk in LDPs. We adopt a generalized method of moments with continuous updating to estimate prior distributions for PD and Rho from historical default data. The method is based on a Bayesian approach without expert opinions. A Markov chain Monte Carlo technique, namely, the Gibbs sampler, is also applied. The performance of the estimation results for LDPs validated by Monte Carlo simulations. Empirical studies on Standard & Poor’s historical default data are also conducted. Copyright Springer-Verlag Berlin Heidelberg 2014
Keywords: Asset correlation; Bayesian confidence intervals; Portfolio credit risk; Probability of default; MCMC; Serial dependence (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-013-0453-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:29:y:2014:i:1:p:331-361
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-013-0453-2
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().