Spectral graph features for the classification of graphs and graph sequences
Miriam Schmidt (),
Günther Palm and
Friedhelm Schwenker
Computational Statistics, 2014, vol. 29, issue 1, 65-80
Abstract:
In this paper, the classification power of the eigenvalues of six graph-associated matrices is investigated. Each matrix contains a certain type of geometric/ spatial information, which may be important for the classification process. The performances of the different feature types is evaluated on two data sets: first a benchmark data set for optical character recognition, where the extracted eigenvalues were utilized as feature vectors for multi-class classification using support vector machines. Classification results are presented for all six feature types, as well as for classifier combinations at decision level. For the decision level combination, probabilistic output support vector machines have been applied, with a performance up to 92.4 %. To investigate the power of the spectra for time dependent tasks, too, a second data set was investigated, consisting of human activities in video streams. To model the time dependency, hidden Markov models were utilized and the classification rate reached 98.3 %. Copyright Springer-Verlag Berlin Heidelberg 2014
Keywords: Graph classification; Spectrum; Graph-associated matrices; Optical character recognition; Human activity recognition (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-012-0381-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:29:y:2014:i:1:p:65-80
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-012-0381-6
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().