Sparse trace norm regularization
Jianhui Chen () and
Jieping Ye ()
Computational Statistics, 2014, vol. 29, issue 3, 623-639
Abstract:
We study the problem of estimating multiple predictive functions from a dictionary of basis functions in the nonparametric regression setting. Our estimation scheme assumes that each predictive function can be estimated in the form of a linear combination of the basis functions. By assuming that the coefficient matrix admits a sparse low-rank structure, we formulate the function estimation problem as a convex program regularized by the trace norm and the $$\ell _1$$ ℓ 1 -norm simultaneously. We propose to solve the convex program using the accelerated gradient (AG) method; we also develop efficient algorithms to solve the key components in AG. In addition, we conduct theoretical analysis on the proposed function estimation scheme: we derive a key property of the optimal solution to the convex program; based on an assumption on the basis functions, we establish a performance bound of the proposed function estimation scheme (via the composite regularization). Simulation studies demonstrate the effectiveness and efficiency of the proposed algorithms. Copyright Springer-Verlag Berlin Heidelberg 2014
Keywords: Low Rank; Regression; Gradient method; Performance bound (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-013-0440-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:29:y:2014:i:3:p:623-639
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-013-0440-7
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().