EconPapers    
Economics at your fingertips  
 

Copula selection for graphical models in continuous Estimation of Distribution Algorithms

Rogelio Salinas-Gutiérrez (), Arturo Hernández-Aguirre () and Enrique Villa-Diharce ()

Computational Statistics, 2014, vol. 29, issue 3, 685-713

Abstract: This paper presents the use of graphical models and copula functions in Estimation of Distribution Algorithms (EDAs) for solving multivariate optimization problems. It is shown in this work how the incorporation of copula functions and graphical models for modeling the dependencies among variables provides some theoretical advantages over traditional EDAs. By means of copula functions and two well known graphical models, this paper presents a novel approach for defining new EDAs. Either dependence is modeled by a copula function chosen from a predefined set of six functions that aim to cover a wide range of inter-relations. It is also shown how the use of mutual information in the learning of graphical models implies a natural way of employing copula entropies. The experimental results on separable and non-separable functions show that the two new EDAs, which adopt copula functions to model dependencies, perform better than their original version with Gaussian variables. Copyright Springer-Verlag Berlin Heidelberg 2014

Keywords: Multivariate optimization problems; Copula functions; Copula entropies; Likelihood function (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-013-0457-y (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:29:y:2014:i:3:p:685-713

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-013-0457-y

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:29:y:2014:i:3:p:685-713